
Universidade Federal de Minas Gerais

ParallelME Runtime: User Manual

User manual for ParallelME
low-level runtime: instructions and application example.

Final Report submitted to LGE as part of the
Project Scheduling heterogeneous tasks on hybrid
device environments.

Belo Horizonte, MG
June 04, 2016

ParallelME Runtime: User Manual

1 Introduction
This document aims to present practical information to instruct a programmer on how to implement
a particular application directly using the ParallelME low-level runtime. The document includes
instructions for environment set up, a step by step guide of the implementation of an application
using the runtime and finally some important observations.

2 Grayscale Image Converter
The application that will be implemented as an example is a grayscale image converter. The
application will get an image bundled with the application and run a task with the ParallelME
Runtime to convert the image to grayscale.

The following algorithm will be used to convert the image to grayscale:

1 for(auto pixel : image) {
2 auto luminosity = 0.21 * pixel.r + 0.72 * pixel.g + 0.07 * pixel.b;
3 pixel.r = pixel.g = pixel.b = luminosity;
4 }

Following the algorithm, for each pixel in the image the luminosity of the pixel will be computed
by a weighted sum of the RGB components of the pixel based on how much the eye sees each
component. Then, all the components will be made equal to this luminosity, what will result in a
gray color. After all the pixels execute this algorithm, the entire image will be in shades of gray.

As this algorithm is embarrassingly parallel, it can be easily optimized using the ParallelME
Runtime.

3 Environment Configuration

3.1 Finding a suitable device
The ParallelME Runtime requires a device with OpenCL support to work. Because of this, the
runtime won’t work on simulators, and not all Android devices have OpenCL support. To check
if your device has OpenCL support, please see the OpenCL-X benchmark1 app. If an Android
device doesn’t support OpenCL, trying to instantiate the parallelme::Runtime class will throw
an exception.

1https://play.google.com/store/apps/details?id=com.maxtrium.opencldevicetest

2

https://play.google.com/store/apps/details?id=com.maxtrium.opencldevicetest

3.2 Configuring Android Studio
For the application we’ll be using Android Studio2, the official Android IDE. However, the C++
support isn’t enabled by default. To enable this support, the Android NDK Toolkit must be
installed and configured.

The following instructions show how to configure Android Studio (2.1) to properly use the NDK
Toolkit:

1. Open the SDK Manager (Tools > Android > SDK Manager) and ensure the following packages
are installed:

• On the SDK Plaform tab, the latest Android SDK platform (except for preview versions).

• On the SDK Tools tab, the latest version of the following packages:

– Android SDK Build Tools
– Android NDK
– Android SDK Platform-Tools
– Android SDK Tools

2. As of Android Studio 2.1, the Instant Run feature does not work well with the NDK Toolkit:
the IDE doesn’t always properly update the apk if the NDK code is recompiled while this
option is active. Because of this, it is recommended to disable the feature by accessing
Preferences > Build, Execution, Deployment > Instant Run and deselect the "Enable Instant
Run" option.

3.3 Creating a project
Create a new project in Android Studio with the default project configurations and an empty
activity. The ParallelME Runtime can be used with Android API 15 or newer.

After creating the project, open the app/src/main folder and create a new jni folder. This will
be the folder that will contain the C++ code that uses the runtime.

As Android Studio automatic NDK compilation doesn’t work properly, we want to disable it
and instead write and call the compilation code manually. To disable the automatic compilation,
add the following lines to the build.gradle file in the app directory, inside android:

1 android {
2 // ...
3

4 sourceSets.main {
5 jni.srcDirs = [] // Disable automatic ndk-build
6 }
7 }

This will remove all the JNI directories from the gradle script and stop Android Studio from
automatically trying to compile the code. This also means that before compiling the Java code on

2https://developer.android.com/studio

3

https://developer.android.com/studio

Android Studio, the ndk-build3 command should be run from inside the app/src/main folder to
manually compile the C++ source.

The ndk-build command reads the Android.mk4 and Application.mk5 files inside the jni
folder.

The Android.mk file should contain two special lines when using the ParallelME Runtime.
Between these two lines should come the normal content:

1 PM_JNI_PATH := $(call my-dir)/ParallelME
2 # Other Android.mk file contents, will be described later
3 include $(wildcard $(PM_JNI_PATH)/**/Android.mk)

These two lines will define where the ParallelME runtime is installed and call all the compilation
scripts inside the jni/ParallelME folder, which will contain the runtime code.

The Application.mk file should specify at least the clang toolchain and the c++_static
STL. These are required when using the ParallelME Runtime, as it uses STL features that are not
available on other STL implementations. An example file would contain:

1 NDK_TOOLCHAIN_VERSION=clang
2 APP_STL:=c++_static
3 # Other Application.mk directives, such as APP_ABI and APP_PLATFORM.

Now the jni/ParallelME folder should be created, and the runtime must be downloaded inside
it by cloning the repository:

1 $ cd jni/ParallelME
2 $ git clone git://github.com/ParallelME/runtime.git # If not on a git repository
3 $ git submodule add git://github.com/ParallelME/runtime.git # If already in one

As the runtime repository already has a Android.mk file, the wildcard inclusion added to
the jni/Android.mk file will include it and automatically compile the runtime when calling the
ndk-build script. The runtime shared library will be called libParallelMERuntime.so, and the
include folder will be at jni/ParallelME/runtime/include.

3.4 Copying the image into the project
The image that will be grayscaled needs to be put inside the app/src/main/res/drawable folder.
This image should be in the JPEG or PNG format, and will be accessible in the source code by
calling R.drawable.<name_without_extension>. Because of this, it is important that the file
name doesn’t contain spaces. In our case, we put a rainbow.jpg file inside the res/drawable
folder, so that it can be accessed in the source code as R.drawable.rainbow.

3https://developer.android.com/ndk/guides/ndk-build.html
4https://developer.android.com/ndk/guides/android_mk.html
5https://developer.android.com/ndk/guides/application_mk.html

4

https://developer.android.com/ndk/guides/ndk-build.html
https://developer.android.com/ndk/guides/android_mk.html
https://developer.android.com/ndk/guides/application_mk.html

4 Implementing the Application

4.1 Adding the buttons and views to the layout
The application will have two buttons — one that displays the grayscaled image and one that
displays the original image — and an ImageView that will be used to display the image. First, open
the res/values/strings.xml and add the text that will be inside the two buttons:

1 <resources>
2 <!– Other strings... –>
3

4 <string name="button_grayscale">Grayscale</string>
5 <string name="button_original">Original</string>
6 </resources>

Then, open the res/layout/activity_main.xml and replace the code inside the RelativeLayout
that comes as default with the file with this:

1 <LinearLayout android:layout_width="fill_parent"
2 android:layout_height="wrap_content"
3 android:orientation="vertical">
4 <LinearLayout android:layout_width="fill_parent"
5 android:layout_height="wrap_content"
6 android:orientation="horizontal">
7 <Button android:layout_width="wrap_content"
8 android:layout_height="wrap_content"
9 android:text="@string/button_grayscale"

10 android:onClick="showGrayscale" />
11 <Button android:layout_width="wrap_content"
12 android:layout_height="wrap_content"
13 android:text="@string/button_original"
14 android:onClick="showOriginal" />
15 </LinearLayout>
16 <HorizontalScrollView android:layout_width="wrap_content"
17 android:layout_height="wrap_content">
18 <ImageView android:id="@+id/image_view"
19 android:layout_width="wrap_content"
20 android:layout_height="wrap_content" />
21 </HorizontalScrollView>
22 </LinearLayout>

This layout file will define first a vertical linear layout to organize the buttons and the image,
then an horizontal linear layout with the two buttons inside it and finally a horizontal scroll view
that contains the image view that will host the image.

5

Note that the first button uses the button_grayscale string we defined earlier and, when
clicked, will call the showGrayscale function of the MainActivity. The second button uses the
button_original instead and will call the showOriginal function when clicked.

The image view has an ID (image_view), so that it can be accessed in the code as the variable
R.id.image_view, and is inside a horizontal scroll view to be able to scroll the image horizontally
in case it is too big.

4.2 Implementing the MainActivity
As described in the last section, the main activity will need to implement two functions: showOriginal
and showGrayscale. To implement these functions, we’ll need two private members inside the activ-
ity: a reference to the ImageView defined in the layout, and an instance of the GrayscaleOperator
class, a class that we’ll write that will be responsible for calling the ParallelME Runtime code to
process the image. These two members must be initialized in the onCreate function:

1 public class MainActivity extends AppCompatActivity {
2 private GrayscaleOperator operator;
3 private ImageView imageView;
4

5 @Override
6 protected void onCreate(Bundle savedInstanceState) {
7 super.onCreate(savedInstanceState);
8 setContentView(R.layout.activity_main);
9

10 operator = new GrayscaleOperator();
11 imageView = (ImageView) findViewById(R.id.image_view);
12 }
13 }

The imageView object is just a reference to the view that we defined in the layout, and is
retrieved by the findViewById method.

After that, the two functions called by the buttons must be implemented. The showOriginal
function is very simple, and just loads the image as a bitmap (from the R.drawable.<image_name>
resource described in section 3.4) and makes the image view display it:

1 public void showOriginal(View view) {
2 Bitmap image = BitmapFactory.decodeResource(getResources(), R.drawable.rainbow);
3 imageView.setImageBitmap(image);
4 }

The showGrayscale function is almost the same, but calls the operator.grayscale() function
(that we’ll implement shortly) on the bitmap before displaying it. This function is responsible for
calling the grayscale algorithm implementation using the ParallelME Runtime.

6

1 public void showOriginal(View view) {
2 Bitmap image = BitmapFactory.decodeResource(getResources(), R.drawable.rainbow);
3 operator.grayscale(image);
4 imageView.setImageBitmap(image);
5 }

4.3 Implementing the GrayscaleOperator Java class
The GrayscaleOperator class will be responsible to initialize the runtime and make the bridge
between the Java application and the C++ code.

The runtime and the compiled OpenCL program will be stored inside a C++ structure. Because
there is no way to store data per Java class instance directly in the C++ code, we’ll employ a small
hack and store a struct pointer inside the Java class. This pointer will contain the address of a
dynamically allocated structure that can be accessed by the C++ code.

We’ll define three native functions: a nativeInit, that will initialize the runtime and return
the pointer to the C++ structure (as a long integer), a nativeCleanUp, that will release the C++
structure when the Java class is destroyed and a nativeGrayscale, the function that will execute
the grayscale algorithm.

1 public class GrayscaleOperator {
2 private long dataPointer = nativeInit();
3

4 private native long nativeInit();
5 private native void nativeCleanUp(long dataPointer);
6 private native void nativeGrayscale(long dataPointer, Bitmap bitmap,
7 int width, int height);
8

9 // ...
10 }

Note that the dataPointer is initialized by calling nativeInit when the class is constructed.
The nativeCleanUp function needs to be called when the finalize java function is called. It

supplies the dataPointer with the structure as the first parameter, and is responsible for deleting
the structure.

1 @Override
2 protected void finalize() throws Throwable {
3 nativeCleanUp(dataPointer);
4 super.finalize();
5 }

A public grayscale function will exist to interface with the nativeGrayscale function, by
supplying the dataPointer, the bitmap and the bitmap sizes as arguments:

7

1 public void grayscale(Bitmap image) {
2 nativeGrayscale(dataPointer, image, image.getWidth(), image.getHeight());
3 }

Finally, the shared library that contains the implementation of the native methods must be
loaded. This can be done by the following code (assuming a "libGrayscale.so" shared library):

1 static {
2 System.loadLibrary("Grayscale");
3 }

4.4 Generating the JNI interface header
After implementing the Java code in the previous sections, hit the Make Project button and wait
until the compilation finishes. The project should compile successfully. However, the application
will not open because the native methods are still not implemented. To do this, enter the jni
folder and generate the JNI header that specifies the native functions of the GrayscaleOperator
class that should be implemented. This can be done by running the javah command. For example,
if the GrayscaleOperator class is inside the org.parallelme.samples.grayscale package (and
the Make Project command has been executed), the command would be (from inside the jni folder):

1 $ javah -classpath <path_to_android_sdk>/platforms/android-23/android.jar:../../../
2 build/intermediates/classes/debug org.parallelme.samples.grayscale.GrayscaleOperator

Note that the correct path to the Android SDK must be supplied. Here in the example I used
the Android 23 version, but any version can be used, so use the one you downloaded when you
installed the Android SDK packages back in section 3.2.

In the example, a file org_parallelme_samples_grayscale_GrayscaleOperator.h would be
created, with the prototypes of the three native functions of the GrayscaleOperator class that
need to be implemented in a .cpp file.

4.5 Implementing the kernel
Now it is time to implement the OpenCL kernel that will run the grayscale algorithm. This kernel
will receive just one parameter, a pointer to the buffer containing the image, and update the pixel
specified by the global ID:

1 __kernel void grayscale(__global uchar4 *image) {
2 int gid = get_global_id(0);
3 uchar4 pixel = image[gid];
4

5 uchar luminosity = 0.21f * pixel.x
6 + 0.72f * pixel.y + 0.07f * pixel.z;

8

7 pixel.x = pixel.y = pixel.z = luminosity;
8

9 image[gid] = pixel;
10 }

The kernel will get the pixel specified by the current global ID, run the algorithm from section 2
and save the results back to the image.

4.6 Implementing the native functions
To implement the native functions specified in the header file generated with the javah tool, we’ll
create a C++ file, in this case called org_parallelme_samples_grayscale_GrayscaleOperator.cpp.
This file should include the header files and define the kernel source code. The easiest way to do
this is to just supply the kernel source as a string in a global variable.

1 #include "org_parallelme_samples_grayscale_GrayscaleOperator.h"
2 #include <parallelme/ParallelME.hpp>
3 using namespace parallelme;
4

5 const static char gKernels[] =
6 "__kernel void grayscale(__global uchar4 *image) { \n"
7 " int gid = get_global_id(0); \n"
8 " uchar4 pixel = image[gid]; \n"
9 " \n"

10 " uchar luminosity = 0.21f * pixel.x \n"
11 " + 0.72f * pixel.y + 0.07f * pixel.z; \n"
12 " pixel.x = pixel.y = pixel.z = luminosity; \n"
13 " \n"
14 " image[gid] = pixel; \n"
15 "} \n";

Then, the data structure that the C++ code will use and return to java should be defined. This
structure will just contain pointers to the ParallelME Runtime and the compiled OpenCL program.

1 struct NativeData {
2 std::shared_ptr<Runtime> runtime;
3 std::shared_ptr<Program> program;
4 };

After that, we are going to implement the nativeInit function. This function will get a pointer
to the JavaVM (as the Runtime needs this on the constructor), create a new Runtime instance and
create a Program instance that will contain the compiled OpenCL code (from the source we defined
as a global variable before). The structure holding all this will be returned as a jlong.

9

1 JNIEXPORT jlong JNICALL
2 Java_org_parallelme_samples_grayscale_GrayscaleOperator_nativeInit
3 (JNIEnv *env, jobject self) {
4 JavaVM *jvm;
5 env->GetJavaVM(&jvm);
6 if(!jvm) return (jlong) nullptr;
7

8 auto dataPointer = new NativeData();
9 dataPointer->runtime = std::make_shared<Runtime>(jvm);

10 dataPointer->program = std::make_shared<Program>(dataPointer->runtime, gKernels);
11

12 return (jlong) dataPointer;
13 }

The nativeCleanUp function will get the pointer and delete it.

1 JNIEXPORT void JNICALL
2 Java_org_parallelme_samples_grayscale_GrayscaleOperator_nativeCleanUp
3 (JNIEnv *env, jobject self, jlong dataLong) {
4 auto dataPointer = (NativeData *) dataLong;
5 delete dataPointer;
6 }

Finally, the nativeGrayscale function will run the grayscale algorithm. First, the function will
get the data pointer, calculate the image size, create a Runtime Buffer as big as the input image
and mark the bitmap to be copied into the buffer.

1 JNIEXPORT void JNICALL
2 Java_org_parallelme_samples_grayscale_GrayscaleOperator_nativeGrayscale
3 (JNIEnv *env, jobject self, jlong dataLong, jobject bitmap, jint width, jint height) {
4 auto dataPointer = (NativeData *) dataLong;
5 auto imageSize = width * height;
6 auto bitmapBuffer = std::make_shared<Buffer>(Buffer::sizeGenerator(imageSize,
7 Buffer::RGBA));
8 bitmapBuffer->setAndroidBitmapSource(env, bitmap);

The setAndroidBitmapSource function saves a global reference to the bitmap, to be used later
as the data source of the buffer. This bitmap will be copied right before the kernel execution in the
target device, so it must be kept alive until the kernel executes.

After that, a task made of kernels from the program we created in the nativeInit function is
created and it’s specified that it will run one kernel: the grayscale kernel.

1 auto task = std::make_unique<Task>(dataPointer->program);
2 task->addKernel("grayscale");

10

Then, we set the config function callback. This callback sets the first (and only) parameter of
the grayscale kernel to point to the buffer created earlier and the number of work items of the
task to be the number of pixels of the image.

1 task->setConfigFunction([=] (DevicePtr &device, KernelHash &kernelHash) {
2 kernelHash["grayscale"]
3 ->setArg(0, bitmapBuffer)
4 ->setWorkSize(imageSize);
5 });

Finally, the task is submitted to the runtime. Soon after that a call to Runtime::finish is
made, to wait for the execution to finish. This is not mandatory, and another task callback (the
finish callback) could be set to be called after the task finishes execution. However, for simplicity,
we’re calling the Runtime::finish function here. At the end, after the Runtime::finish function
is called, the contents of the buffer are copied to the bitmap.

1 dataPointer->runtime->submitTask(std::move(task));
2 dataPointer->runtime->finish();
3

4 bitmapBuffer->copyToAndroidBitmap(env, bitmap);
5 }

4.7 FInishing the Android.mk file
We partially implemented the jni/Android.mk file in section 3.3. Now we’ll finish the implemen-
tation and add the rest of the missing code.

The jni/Android.mk file started by specifying where the ParallelME code was located:

1 PM_JNI_PATH := $(call my-dir)/ParallelME

Then, we specify the local path where the code is and include the CLEAR_VARS variable to clean
all compilation variables before compiling our code.

1 LOCAL_PATH := $(call my-dir)
2 include $(CLEAR_VARS)

After that, we specify the name of the compiled library. In this example we’ll name it as
"Grayscale", so that the shared library name will be "libGrayscale.so".

1 LOCAL_MODULE := Grayscale

Then we must specify the ParallelME include directories so that the compiler can find the
<parallelme/ParallelME.hpp> header file.

11

1 LOCAL_C_INCLUDES := $(PM_JNI_PATH)/runtime/include

It is also important to specify optimization flags, enable warnings and enable C++14, used in
this example. Note that we add the "-Wno-unused-parameter" flag here, as implementing the JNI
functions normally doesn’t use all the function parameters.

1 LOCAL_CPPFLAGS := -Ofast -Wall -Wextra -Werror -Wno-unused-parameter -std=c++14

Next we specify a dependency on the ParallelMERuntime shared library and the source files
we reated.

1 LOCAL_SHARED_LIBRARIES := ParallelMERuntime
2 LOCAL_SRC_FILES := org_parallelme_samples_grayscale_GrayscaleOperator.cpp

Finally, we include all the Android.mk files inside the ParallelME folder to compile all depen-
dencies.

1 include $(wildcard $(PM_JNI_PATH)/**/Android.mk)

5 Finished Application

Figure 1: Finished application showing the original image to the left and the grayscaled image to
the right.

The finished application implements a very efficient grayscale algorithm that can be seen in
figure 1. The full source code for this example can be found at:
https://github.com/ParallelME/samples/tree/master/Grayscale.

Other ParallelME examples (not solely directly using the runtime) can be found at:
https://github.com/ParallelME/samples.

12

https://github.com/ParallelME/samples/tree/master/Grayscale
https://github.com/ParallelME/samples

	Introduction
	Grayscale Image Converter
	Environment Configuration
	Finding a suitable device
	Configuring Android Studio
	Creating a project
	Copying the image into the project

	Implementing the Application
	Adding the buttons and views to the layout
	Implementing the MainActivity
	Implementing the GrayscaleOperator Java class
	Generating the JNI interface header
	Implementing the kernel
	Implementing the native functions
	FInishing the Android.mk file

	Finished Application

